263 research outputs found

    Automating Vehicles by Deep Reinforcement Learning using Task Separation with Hill Climbing

    Full text link
    Within the context of autonomous driving a model-based reinforcement learning algorithm is proposed for the design of neural network-parameterized controllers. Classical model-based control methods, which include sampling- and lattice-based algorithms and model predictive control, suffer from the trade-off between model complexity and computational burden required for the online solution of expensive optimization or search problems at every short sampling time. To circumvent this trade-off, a 2-step procedure is motivated: first learning of a controller during offline training based on an arbitrarily complicated mathematical system model, before online fast feedforward evaluation of the trained controller. The contribution of this paper is the proposition of a simple gradient-free and model-based algorithm for deep reinforcement learning using task separation with hill climbing (TSHC). In particular, (i) simultaneous training on separate deterministic tasks with the purpose of encoding many motion primitives in a neural network, and (ii) the employment of maximally sparse rewards in combination with virtual velocity constraints (VVCs) in setpoint proximity are advocated.Comment: 10 pages, 6 figures, 1 tabl

    Road layout understanding by generative adversarial inpainting

    Get PDF
    Autonomous driving is becoming a reality, yet vehicles still need to rely on complex sensor fusion to understand the scene they act in. The ability to discern static environment and dynamic entities provides a comprehension of the road layout that poses constraints to the reasoning process about moving objects. We pursue this through a GAN-based semantic segmentation inpainting model to remove all dynamic objects from the scene and focus on understanding its static components such as streets, sidewalks and buildings. We evaluate this task on the Cityscapes dataset and on a novel synthetically generated dataset obtained with the CARLA simulator and specifically designed to quantitatively evaluate semantic segmentation inpaintings. We compare our methods with a variety of baselines working both in the RGB and segmentation domains

    Fatty Acid Composition of M. Biceps Femoris of Edible Dormouse (Glis glis L.)

    Get PDF
    This study aimed to investigate the fatty acid (FA) composition of edible dormouse m. biceps femoris in both sexes. More than 20 FA were identified in the muscle, with the 18:1cis-9 (oleic acid) being the most abundant in both sexes, comprising more than 50% of total FA in muscle. The most dominated FA were monounsaturated (MUFA), followed by saturated FA (SFA) and polyunsaturated FA (PUFA), reaching 54.8%, 25.43% and 19.8% of total FA, respectively. Sums of PUFA and n-3 PUFA tended (p > 0.05) to be higher in males than in females. There were no significant differences between sexes on the FA composition. Nevertheless, the 18:2n-6 tended to differ between sexes (p = 0.063). Several long-chain PUFA (LC-PUFA) were detected in dormouse muscle, with the 20:4 n-6 (arachidonic acid, AA) and the 22:6 n-3 (docosahexaenoic acid, DHA) being the most abundant in both sexes. The relatively high stearoyl-CoA desaturase (SCD) indexes and the large concentration of 18:1cis-9 in dormouse muscle tissues might point to a low mobilization of the SCD products. Furthermore, finding the unusual FA 20:3 D5,D11,D14, suggests feeding on leaf and wood lipids of Coniferophytes. We demonstrated sexual size monomorphism in edible dormouse. The literature regarding the composition of dormouse meat is scarce and no studies reported the FA composition of muscle, thus, this work can contribute to increasing the knowledge on edible dormouse physiology and nutritional traitsinfo:eu-repo/semantics/publishedVersio

    AIBA: An AI Model for Behavior Arbitration in Autonomous Driving

    Full text link
    Driving in dynamically changing traffic is a highly challenging task for autonomous vehicles, especially in crowded urban roadways. The Artificial Intelligence (AI) system of a driverless car must be able to arbitrate between different driving strategies in order to properly plan the car's path, based on an understandable traffic scene model. In this paper, an AI behavior arbitration algorithm for Autonomous Driving (AD) is proposed. The method, coined AIBA (AI Behavior Arbitration), has been developed in two stages: (i) human driving scene description and understanding and (ii) formal modelling. The description of the scene is achieved by mimicking a human cognition model, while the modelling part is based on a formal representation which approximates the human driver understanding process. The advantage of the formal representation is that the functional safety of the system can be analytically inferred. The performance of the algorithm has been evaluated in Virtual Test Drive (VTD), a comprehensive traffic simulator, and in GridSim, a vehicle kinematics engine for prototypes.Comment: 12 page

    NON-INVASIVE BLOOD PRESSURE AND OTHER PHYSIOLOGICAL DATA IN CHEMICALLY IMMOBILIZED BROWN BEARS (URSUS ARCTOS)

    Get PDF
    Free-ranging brown bears (Ursus arctos) were snared and subsequently darted with a combination of xylazine-ketamine in Croatia (n = 5) or darted from a helicopter with a combination of medetomidine-tiletamine-zolazepam in Scandinavia (n = 20). Three adults and one yearling (1 year old) bear were captured in Croatia, with one adult being captured twice. The Scandinavian bears were divided into Group A (yearlings, n = 7) and Group B (subadults, n = 2 and adults, n = 11). The exertion time (time from activation of the trap or from the start of the helicopter chase to recumbency) and the induction time (time from darting to recumbency) were recorded. The rectal temperature (Tr) was measured as soon as possible after induction and then monitored at frequent intervals (varied between individuals) in immobilized bears. Blood pressure (BP) was measured with a non-invasive method (Korotkoff's technique) every 5 minutes. The heart rate (HR), respiratory rate (RR), and arterial haemoglobin oxygen saturation (SpO2) were recorded every 5 minutes. Reliability of the BP monitoring technique, trends of variation of the physiological variables, and the factors related to the capture were assessed. Both exertion and induction times were longer in Croatian bears than in Scandinavian bears. In Croatian bears, the Tr was either constant or slightly decreasing, with hyperthermia recorded in two individuals (Tr > 39.0° C). In Scandinavian bears, 17 of 20 individuals developed an initial hyperthermia. Four of five bears in Croatia and 17 of 20 bears in Scandinavia showed a decreasing trend in systolic and mean BP over time. According to the Korotkoff method, all bears were hypertensive (mean BP > 130 mmHg) with varying severity, and the systolic pressure was significantly lower in yearlings when compared to subadults and adults. Yearlings had significantly (p < 0.05) higher HR than subadults and adults, however there was no significant differences in RR, SpO2, and Tr between the age groups. All Croatian bears and 13 of 20 Scandinavian bears were moderately to severely hypoxemic (SpO2 < 90%). Further studies with simultaneous invasive and non-invasive (Korotkoff) BP monitoring techniques are required to confirm the accuracy of methods used in this study. The data presented here provides evidence of the physiological impact of different capture methods and chemical immobilization of brown bears in Croatia and Scandinavia

    Five decades of radioglaciology

    Get PDF
    Radar sounding is a powerful geophysical approach for characterizing the subsurface conditions of terrestrial and planetary ice masses at local to global scales. As a result, a wide array of orbital, airborne, ground-based, and in situ instruments, platforms and data analysis approaches for radioglaciology have been developed, applied or proposed. Terrestrially, airborne radar sounding has been used in glaciology to observe ice thickness, basal topography and englacial layers for five decades. More recently, radar sounding data have also been exploited to estimate the extent and configuration of subglacial water, the geometry of subglacial bedforms and the subglacial and englacial thermal states of ice sheets. Planetary radar sounders have observed, or are planned to observe, the subsurfaces and near-surfaces of Mars, Earth's Moon, comets and the icy moons of Jupiter. In this review paper, and the thematic issue of the Annals of Glaciology on ‘Five decades of radioglaciology’ to which it belongs, we present recent advances in the fields of radar systems, missions, signal processing, data analysis, modeling and scientific interpretation. Our review presents progress in these fields since the last radio-glaciological Annals of Glaciology issue of 2014, the context of their history and future prospects

    Bed topography of Jakobshavn Isbrae, Greenland, and Byrd Glacier, Antarctica

    Get PDF
    This is the published version. Copyright 2015 International Glaciological SocietyThis paper presents the bed topography of Jakobshavn Isbrae, Greenland, and Byrd Glacier, Antarctica, derived from sounding these glaciers with high-sensitivity radars. To understand the processes causing the speed-up and retreat of outlet glaciers, and to enable the development of next-generation ice-sheet models, we need information on bed topography and basal conditions. To this end, we performed measurements with the progressively improved Multichannel Coherent Radar Depth Sounder/Imager (MCoRDS/I). We processed the data from each antenna-array element using synthetic aperture radar algorithms to improve radar sensitivity and reduce along-track surface clutter. We then applied array and image-processing algorithms to extract the weak bed echoes buried in off-vertical scatter (cross-track surface clutter). At Jakobshavn Isbrae, we observed 2.7 km thick ice ∼30 km upstream of the calving front and ∼850 m thick ice at the calving front. We also observed echoes from multiple interfaces near the bed. We applied the MUSIC algorithm to the data to derive the direction of arrival of the signals. This analysis revealed that clutter is dominated by the ice surface at Jakobshavn Isbrae. At Byrd Glacier, we found ∼3.62 km thick ice, as well as a subglacial trench ∼3.05 km below sea level. We used ice thickness information derived from radar data in conjunction with surface elevation data to generate bed maps for these two critical glaciers. The performance of current radars must be improved further by ∼15 dB to fully sound the deepest part of Byrd Glacier. Unmanned aerial systems equipped with radars that can be flown over lines spaced as close as 5 m apart in the cross-track direction to synthesize a two-dimensional aperture would be ideal for collecting fine-resolution data over glaciers like Jakobshavn near their grounding lines

    Wideband measurements of ice sheet attenuation and basal scattering

    Get PDF
    ©2005 IEEE. Personal use of this material is permitted. However, permission to reprint/republish this material for advertising or promotional purposes or for creating new collective works for resale or redistribution to servers or lists, or to reuse any copyrighted component of this work in other works must be obtained from the IEEE.We are developing a multifirequency multistatic synthetic aperture radar (SAR) for determining polar ice sheet basal conditions. To obtain data for designing and optimizing radar performance, we performed field measurements with a network-analyzer-based system during the 2003 field season at the North Greenland Ice Core Project camp (75.1 N and 42.3 W). From the measurements, we determine the ice sheet complex transfer function over the frequency range from 110-500 MHz by deconvolving out the system transfer function. Over this frequency range, we observe an increase in total loss of 8 +/- 2.5 dB using a linear regression to the log-scale data. With the ice sheet transfer function and an ice extinction model, we estimate the return loss from the basal surface to be approximately 37 dB. These measurements have broad applicability to interpreting radar-sounding data, which are widely used in glaciological studies of the polar ice sheets. These data have also been used in the link budget for the design considerations of the multifirequency multistatic SAR system
    • …
    corecore